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Abstract
We study a Gaussian Potts–Hopfield model. Whereas for Ising spins and two
disorder variables per site the chaotic pair scenario is realized, we find that for
q-state Potts spins q(q− 1)-tuples occur. Beyond the breaking of a continuous
stochastic symmetry, we study the fluctuations and obtain the Newman–Stein
metastate description for our model.

PACS numbers: 05.50.+q, 75.50.Lk, 87.18.Su

1. Introduction

In this paper we study the mean-field Potts model with Hopfield–Mattis disorder, in particular
with Gaussianly distributed disorder. This model is a generalization of the model studied
in [BvEN]. It provides yet another example of a disordered model with infinitely many low-
temperature pure states, such as is sometimes believed to be typical for spin glasses [MPV].
In our model, however, in contrast to that of [BvEN], instead of chaotic pairs we find that the
chaotic size dependence is realized by chaotic q(q − 1)-tuples. For the notion of chaotic size
dependence and the notion of chaotic pairs which were introduced by Newman and Stein, we
refer the reader to [NS, NS2] and references therein. Compare also [BvEN] and [Nie]. For
an extensive discussion of the Hopfield model, including some history and its relation with
the theory of neural networks, see [B, p 133 and following] and [BG]. A somewhat different
generalization of the Hopfield model to Potts spins was introduced by Kanter in [K] and was
mathematically rigorously analysed in [G]. However, whereas the version we treat here (in
which the form of the disorder is the Mattis–Hopfield one) displays the phenomenon of stochas-
tic symmetry breaking, in which a finite-spin, ‘finite-pattern’ model can end up with chaotic
size dependence, and a realization of chaotic n-tuples out of infinitely many ‘pure states’, we
did not see how to obtain such results in a version of Kanter’s form of the disorder distribution.

We are concerned in particular with the infinite-volume limit behaviour of the Gibbs and
ground-state measures. The possible limit points are labelled as the minima of an appropriate
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mean-field (free-) energy functional. These minima can be obtained as solutions of a suitable
mean-field equation. These minima lie on the minimal-free-energy surface, which is an
m(q−1)-sphere in the (e1, . . . , eq)⊗m-space. This space for q-state Potts spins andm patterns
is formed by them-fold product of the hyperplane spanned by the end points of the unit vectors
eq , which are the possible values of the spins. But only a limited area of the minimal-free-
energy surface is accessible. Only those values for which certain mean-field equations hold
are allowed. These equations have the structure of fixed-point equations. We derive them in
section 4. To obtain the Gibbs states we need to find the solutions of these equations on the
minimal-free-energy surface.

The structure of the ground or Gibbs states for q = 2 and ξk Gaussian withm = 2 has been
known for a few years [BvEN]. Due to the Gaussian distribution, we have a nice symmetric
structure: the extremal ground (and Gibbs) states form a circle. For a fixed configuration and
a large finite volume, the possible order parameter values become close to two diametrical
points (which ones depends on the volume of the system) on this circle. This paper treats the
generalization of this structure to q-state Potts spins with q > 2. To have a concrete example,
we concentrate on the case q = 3. It turns out that we again obtain a circle symmetry but also
a discrete symmetry, which generalizes the one for Ising spins. One gets instead of a single
pair a triple of pairs (living on three separate circles), where for each pair one has a similar
structure to that for the single pair for q = 2. For q > 3 we get (q(q − 1))/2 pairs and a
similar higher-dimensional structure.

Our model displays quenched disorder. This means that we look at a fixed, particular
realization of the patterns. It turns out that there is some kind of self-averaging. The
thermodynamic behaviour of the Hamiltonian is the same for almost every realization. This is
the case for the free energy and the associated fixed-point equations, as is familiar from many
quenched disordered models. However, this is not precisely true for the order parameters. We
will see that they show a form of chaotic size dependence, i.e. the behaviour strongly depends
both on the chosen configuration and on the way in which one takes the infinite-volume limit
N → ∞ (that is, along which subsequence).

2. Notation and definitions

We start with some definitions. Consider the set N = {1, . . . , N} ∈ N
+. Let the single-

spin space χ be a finite set and the N -spin configuration space be χ⊗N . We denote a spin
configuration by σ and its value at site i by σi . We will consider Potts spins, in the Wu
representation [Wu]. The setχ⊗N is then theN -fold tensor product of the setχ = {e1, . . . , eq}.
The eσ are the projection of the spin vectors eσ on the hypertetrahedron in R

q−1 spanned by
the end points of eσ . For q = 3 we get for example for e1, e2 and e3 the vectors{(

1
0

)
,

( − 1
2

1
2

√
3

)
,

( − 1
2

− 1
2

√
3

)}
.

The Hamiltonian of our model is defined as follows:

−βHN = β

N

m∑
k=1

N∑
i,j=1

ξki ξ
k
j δ(σi, σj ), with δ(σi, σj ) = 1

q
[1 + (q − 1)eσi · eσj ],

where ξki is the ith component of the random N -component vector ξk . For the ξki we choose
i.i.d. N(0, 1) distributions. The vectors ξk = (ξ k1 , . . . , ξ

k
N), by analogy with the standard

Hopfield model, are called patterns. If we combine the above, we can rewrite the Hamiltonian
HN as
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−βHN = β q − 1

q
N

m∑
k=1

[(∑
ξki e

σi

N

)2

+
1

q − 1

(∑
ξki

N

)2]
.

So asymptotically

−βHN = NK
2

m∑
k=1

q2
kN ,

with K = 2β

(
q − 1

q

)
and order parameters qkN = 1

N

N∑
i=1

ξki e
σi .

(1)

The last term is an irrelevant constant; in fact it approaches zero, due to the strong law of
large numbers. (The ξki are i.i.d. N(0, 1) distributed, so Eξki = 0.) Note that any i.i.d.
distribution with zero mean, finite variance and symmetrically distributed around zero will
give an analogous form ofHN , but we plan to consider only Gaussian distributions, for which
we find that a continuous symmetry can be stochastically broken, just as in [BvEN]. From
now on we drop the subscript N to simplify the notation, when no confusion can arise.

Furthermore, we introduce two representations for the order parameters 
q. If we assume
m = 2, then 
q = (
q1, 
q2) and the definitions are as follows: if we consider the space R

q−1

spanned by the vectors e1, . . . , eq the 
x-plane, we define 
q = (x1, . . . , x2(q−1)). It is often
more convenient to look at the (higher-dimensional) (e1, . . . , eq)-space. In that case we take

q = (a1, a2, a3, b1, b2, b3) for q = 3 and an equivalent equation for other values of q. For
m �= 2 the definitions are analogous.

3. Ground states

Now it is time to reveal the characteristics of the ground states for the Potts model. First we
discuss the simple behaviour for one pattern. Then the more interesting part: q > 2 and two
patterns.

3.1. Ground states for one pattern

For one pattern ξ , the Hamiltonian is of the following form:

−βH = NK
2


q2
1 = β

N

N∑
i,j=1

ξiξj δ(σi, σj ).

We easily see that the ground states are obtained by directing the spins with ξi > 0 in one
direction and the spins with ξi � 0 in a different direction. If we have as the distribution for
the ξi P (ξi = ±1) = 1

2 , then the order parameter is of the form: 
q1 = 1
2 (e

σi − eσj ), with
1 � i, j � q and i �= j ; see also [vEHP]. So for q = 3 we have only six ground states. They
form a regular hexagon: (± 3

4 ,∓
√

3
4 ), ± ( 3

4 ,
√

3
4 ), (0,±

√
3

2 ). This regular hexagon with its
interior is the convex set of possible order parameter values. It is easy to see that for ξi N(0, 1)-
distributed, we get the same ground states except for a scaling factor

√
2/π multiplying the

values of the order parameter values.

3.2. Ground states for two patterns

The Hamiltonian for two patterns (Gaussian i.i.d.) is

−βHN = β

N

N∑
i,j=1

(ξiξj + ηiηj )δ(σi, σj ) = NK
2
(
q2

1 + 
q2
2 ).
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Similarly to in [BvEN], we make use of the fact that the distribution of two independent
identically distributed Gaussians has a continuous rotation symmetry. This symmetry also
shows up in the order parameters. Let


q1(θ) =
(
x1(θ)

x2(θ)

)
=
(
α sin θ
β sin θ

)
, 
q2(θ) =

(
x3(θ)

x4(θ)

)
=
(
α cos θ
β cos θ

)
, (2)

with (α, β) a ground state associated with the special case θ = 0 i.e. to the second pattern.
We note that asymptotically for large N we get the same ground-state energy per site for
each value of θ . Because the surface on which the Hamiltonian is constant is of the form

q2

1 + 
q2
2 = C2, these are the only ground states. For finite N , however, there are finitely many

(q(q − 1)) ground states, corresponding to one particular value of θ (the exact symmetry of
choosing a different pair of Potts directions gives the q(q − 1) ground states). This is an
example of chaotic size dependence, based on the breaking of a stochastic symmetry, of the
same nature as in [BvEN]. Because of weak compactness, different subsequences exist whose
q(q − 1)-tuples of ground states converge to q(q − 1)-tuples, associated with particular θ -
values. These subsequences depend on the random pattern realization (see the appendix). For
further background on chaotic size dependence and its role in the theory of metastates, we
refer the reader to [NS].

For any finite-m � 3 patterns, one has the same discrete structure as before, but instead
of a continuous circle symmetry, we have a continuous m-sphere symmetry (isomorphic to
O(m)). The case of an infinite (that is, increasing with the system) m is still open.

4. Positive temperatures

At positive temperatures, instead of minimizing an energy, one needs to minimize a free-energy
expression.

By making use of arguments from large-deviation theory we obtain (see e.g. [HvEC])

−βf (β) = sup

q1,
q2

{Q(
q1, 
q2)− c$(
q1, 
q2)},

where f is the free energy per spin and −βH = N K
2 (
q2

1 + 
q2
2 ) ≡ NQ. The function c$ is the

Legendre transform of c, where c is defined as follows:

c(
t) = lim
N→∞

1

N
ln{Eσ exp(
t1 ·N 
q1 + 
t2 ·N 
q2)}.

Here 
t1 and 
t2 are vectors in R
q−1 and trσ is the normalized trace at a single site. To determine

the supremum (maximum), we differentiate and put the derivative equal to 0. This implies that
for 
q1 and 
q2 the following holds:

(
q1, 
q2)max = ∇c(∇Q(
q1, 
q2)) = ∇c(K 
q1,K 
q2), with
K 
q1 = ∂Q

∂ 
q1

K 
q2 = ∂Q

∂ 
q2
.

(3)

We make use of the fact that for a convex function c, ∇c$ = (∇c)−1 (see also [BG, ch 3] and
compare p 27). Now let us rewrite c(
t):

c(
t) = lim
N→∞

1

N
ln{Eσ exp(
t1 ·N 
q1 + 
t2 ·N 
q2)}

= · · · = 〈ln trσ {exp(ξ 
t1 + η 
t2) · eσ }〉ξ,η.
Plugging this into (3) we get the mean-field equations for the order parameters which have the
structure of a system of fixed-point equations 
q = F ( 
q):
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q1 =
〈

trσ {ξeσ exp[K(ξq1 + ηq2) · eσ ]}
trσ {exp[K(ξq1 + ηq2) · eσ ]}

〉
ξ,η


q2 =
〈

trσ {ηeσ {exp[K(ξq1 + ηq2) · eσ ]}
trσ {exp[K(ξq1 + ηq2) · eσ ]}

〉
ξ,η

.

(4)

If we are in the allowed area, that is, the domain of definition of F , it is equivalent to look in
the (e1, . . . , eq)-space. We may rewrite (4) in this area as follows:


q1 =

 a1
...

aq


 =




〈
ξ expK(ξa1+ηb1)∑q

i=1 expK(ξai+ηbi )

〉
ξ,η

...〈
ξ expK(ξaq+ηbq )∑q

i=1 expK(ξai+ηbi )

〉
ξ,η





q2 =

 b1
...

bq


 =




〈
η expK(ξa1+ηb1)∑q

i=1 expK(ξai+ηbi )

〉
ξ,η

...〈
η expK(ξaq+ηbq )∑q

i=1 expK(ξai+ηbi )

〉
ξ,η




with 
q1 = ∑q

i=1 aiei and 
q2 = ∑q

i=1 biei .

4.1. Ising spins

If we look at the behaviour for N → ∞, then due to the strong law of large numbers
(1/N)

∑N
i=1 ξi = Eξ = 0. Each coordinate aj of vector 
q1 = (a1, a2) is defined as

(1/N)
∑N
i=1 ξiδ(σi, σj ). This means that aj is the contribution of the spins in the j th direction

to the sum (1/N)
∑N
i=1 ξi . Therefore: a1+a2 = (1/N)∑N

i=1 ξi = 0 a.e. This gives a necessary
condition for the allowed area of Ising spins:

a1 = −a2 ∧ b1 = −b2. (5)

Furthermore, for all Gibbs states the value of the energy is constant; therefore:

a2
1 + a2

2 + b2
1 + b2

2 = r$2

2
. (6)

When we substitute (5) in equation (6) and project the result to the (x1, x2)-plane by the
projection ( : e1 → 1, e2 → −1, we obtain the following equation:

x2
1 + x2

2 = r$2
.

Thus to get the radius of the circle of the Gibbs states r$, just take the point 
q1 = (a,−a), 
q2 =
(0, 0). This corresponds to the point (2a, 0) in the (x1, x2)-plane, by the projection (. Of
course 2a = r$.

With this we calculate the equation for the first coordinate of 
q1 in the (e1, e2)-plane by
substituting the corresponding fixed-point equation:

a = 1

2π

∫ ∫
ξ

expβξa

expβξa + exp(−βξa) exp

(
−ξ

2 + η2

2

)
dξ dη

= 1√
2π

∫
ξ

expβξa

expβξa + exp(−βξa) exp

(
−ξ

2

2

)
dξ.

We replacedK by β, because for Ising spinsK = 2β(2−1)/2 = β. We calculate the equation
for the second coordinate of 
q1 in the same way. The vector 
q2 is simply (0, 0). Now project
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q1 and 
q2 to the (x1, x2)-plane. That is done by subtracting the second coordinate of the 
qi
from the first one. We get the following equation for the radius r$:

r$ = 1√
2π

∫
ξ tanh

(
βξr$

2

)
exp

(
−ξ

2

2

)
dξ. (7)

For β > β0 this equation has a nontrivial solution for r$. The equation is the same as in [BvEN]
except the factor 1/2 in the tanh. This is due to our using the Wu representation.

4.2. Potts spins

If we take q = 3, thenK = 4
3β. The set of ground states now can be parametrized by three (in

general (q(q − 1)/2)) circles, and similarly for the low-temperature Gibbs states. To obtain
the radius r̂ of such a circle parametrizing the ground or Gibbs states, we follow the same recipe
as in the case of Ising spins. Here we take the point (
q1, 
q2)with 
q1 = (0, r̂/√3,−r̂/√3) and

q2 = (0, 0, 0) (the representatives of both 
qi in the (e1, e2, e3)-plane). Now 
q1 projects to
(0, r̂) by the projection(

x1

x2

)
=
(

1 − 1
2 − 1

2

0 1
2

√
3 − 1

2

√
3

)( a1

a2

a3

)
.

So if we substitute the corresponding fixed-point equations for 
q1 in the (e1, e2, e3)-plane,
we get for the order parameter values (a1, a2, a3) ≡ 
q1 the following mean-field equations:

(
a1

a2

a3

)
=




0
1√
2π

∫
ξ

exp(Kξ r̂/
√

3)

exp(Kξ r̂/
√

3) + exp(−Kξr̂/√3) + 1
exp

(
−ξ

2

2

)
dξ

1√
2π

∫
ξ

exp(−Kξr̂/√3)

exp(Kξ r̂/
√

3) + exp(−Kξr̂/√3) + 1
exp

(
−ξ

2

2

)
dξ


 .

Here (a1, a2, a3) = (0, r̂/√3,−r̂/√3). Thus by taking the difference between a2 and a3 and
multiplying it by 1

2

√
3, we finally get the following expression for the absolute value r̂:

r̂ = 1

2
√
π

√
3

2

∫
ξ

exp(Kξ r̂/
√

3)− exp(−Kξr̂/√3)

exp(Kξ r̂/
√

3) + exp(−Kξr̂/√3) + 1
exp

(
−ξ

2

2

)
dξ

= 1√
π

√
3

2

∫
ξ sinh(Kξ r̂/

√
3)

2 cosh(Kξ r̂/
√

3) + 1
exp

(
−ξ

2

2

)
dξ. (8)

We can easily check that this expression indeed approaches the one for the radius for the
circles through the ground states, by considering the behaviour of the integrand for K → ∞.
It behaves as follows:∫

|ξ | exp

(
−ξ

2

2

)
dξ.

Again, the case of m an arbitrary finite number of patterns is a straightforward extension.
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Appendix A. Stochastic symmetry breaking for q = 3

In this appendix we adapt the fluctuation analysis of [BvEN] to include Potts spins. We
essentially follow the same line of argument, and find that the fluctuations, properly scaled,
after dividing out the discrete symmetry, approach again a Gaussian process on the circle.

For notational simplicity we treat the case q = 3 only. For q > 3 a similar analysis
applies. Define the function φN,2 as follows:

βφN,2(
z) = −Q(
z) + 
z · ∇Q(
z)− c(∇Q(
z)),
where c(
t) equals

c(
t) = 1

N
ln{Eσ exp 
t1 ·N 
q1 + 
t2 ·N 
q2} = 1

N

N∑
i=1

ln{Eσi exp 
t1 · ξieσi + 
t2 · ηieσi }.

This φN is chosen such that for N → ∞ the measure

L̃ = e−βNφN

ZN,β
→ L,

where L is the induced distribution of the overlap parameters.
For q = 3 the following holds:

Q(
z) = K

2
‖
z‖2

2 = 2

3
β‖
z‖2.

Thus,

φN,2(
z) = 2

3
‖
z‖2

2 − 1

βN
ln

{
Eσ exp

4

3
β(ξi
z1 · eσi + ηi
z2 · eσi )

}
≡ 2

3
‖
z‖2

2 − 1

βN
,N,2.

,N,2 =
N∑
i=1

ln

{
1

3
expK(ξiz11 + ηiz21) +

2

3
exp −K

2
(ξiz11 + ηiz21) cosh

K
√

3

2
(ξiz12 + ηiz22)

}

=
N∑
i=1

ln

{
1

3
φ1(z11, z22)ξ,η +

2

3
√
φ1(z11, z22)ξ,η

φ2(z12, z22)ξ,η

}
.

Because for finite N the set of six Gibbs states has a discrete symmetry, as mentioned
before, we choose out of these six states one state that we like, namely the one of the form
(0,±α sin θ, 0,±α cos θ). Note that the θ depends both on N and on the realization of the
random disorder variable. Then z11 = z21 = 0 and φ1 = 1. Inserting this and defining
z12 = z̃1 and z22 = z̃2, we get for φ

φ(z̃1, z̃2) = 2

3
‖(z̃1, z̃2)‖2

2 − 1

βN

N∑
i=1

ln

{
1

3
+

2

3
cosh

2√
3
β(ξi z̃1 + ηi z̃2)

}
.

Putting (z1, z2) = 2√
3
(z̃1, z̃2) we obtain

φ(z1, z2) = 1

2
‖(z1, z2)‖2

2 − 1

βN

N∑
i=1

ln

{
1

2
+ cosh β(ξiz1 + ηiz2)

}
− 1

βN
ln

2

3
.

From now on the last term will be ignored. So it is enough to prove now that with the 1
2 term

we get the desired chaotic pair structure between the patterns due to the quenched disorder
for this class of ground states, once we divide out the appropriate discrete Potts permutation
symmetry. Thus the original model displays chaotic 6-tuples.
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Therefore we only need to control the fluctuations of φ. Define

f $N(
z)− Ef $N(
z) ≡ 1

βN

N∑
i=1

ln{cosh β
z · (ξ, η)} − 1

βN

N∑
i=1

E ln{cosh β
z · (ξ, η)}. (9)

This is the fluctuation of the Ising case which we can estimate by [BvEN]. Denote the
corresponding φ-function by φ$. We start with the following lemma:

Lemma A.1.

exp(−βNφ) � exp(−βNφ$). (10)

Proof. Because

exp(−βNφ) = exp(−βNEφ$) exp(−βN(φ − Eφ$)),

we only have to estimate the quantity φ − Eφ$. Notice that also a lower bound is essential,
because the quantity can become negative. First the estimate from above:

φ − Eφ$ = 1

βN

N∑
i=1

ln

{
1

2
+ cosh β
z · (ξ, η)

}
− 1

βN

N∑
i=1

E ln{cosh β
z · (ξ, η)}.

Now use

ln

{
1

2
+ cosh β
z · (ξ, η)

}
= ln

{
1 +

1

2 cosh β
z · (ξ, η)
}

+ ln{cosh β
z · (ξ, η)}

� ln{cosh β
z · (ξ, η)} + ln
3

2
to get

φ − Eφ$ � 1

βN

N∑
i=1

ln{cosh β
z · (ξ, η)} − 1

βN

N∑
i=1

E ln{cosh β
z · (ξ, η)} +
1

β
ln

3

2

= f $N(
z)− Ef $N(
z) +
1

β
ln

3

2
. (11)

This is because cosh x � 1 for all x ∈ R. �

The lower bound is easy because

1

βN

N∑
i=1

ln

{
1

2
+ cosh β
z · (ξ, η)

}
� 1

βN

N∑
i=1

ln{cosh β
z · (ξ, η)}.

This is due to the fact that the function ln α is monotonically increasing in α. Then it follows
that

φ − Eφ$ � f $N(
z)− Ef $N(
z). (12)

Combine (11), (12) and use the fact that in the limit limN→∞ the constant term (1/β) ln 3
2 does

not contribute to the expression exp{−βN(φ − Eφ$)} to conclude the proof of lemma A.1.
Henceforth it is convenient to transform φ$ to polar coordinates. Define z = (r cos θ ,

r sin θ). Then (9) transforms to

|f̄ $N (r, θ)| =
∣∣∣∣ 1

β
EψEζ ln cosh{βζr cosψ} − 1

βN

N∑
i=1

ln cosh{βrζi cos(θ − ψi)}
∣∣∣∣

= |Ef $N(r, θ)− f $N(r, θ)|.
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Here ζ, ψ denote the polar decomposition of the two-dimensional vector (ξ, η), i.e. ζ is
distributed with density x exp −x2/2 on R

+ andψ uniformly on the circle [0, 2π). See [BvEN,
p 188]. This we see easily because

ξz1 + ηz2 = (ζ cosψ)(r cos θ) + (ζ sinψ)(r sin θ) = ζ r(cos θ cosψ + sin θ sinψ)

= ζ r cos (θ − ψ) and Eψ cos (θ − ψ) = Eψ cosψ.

With φ$ in this form, estimate (10) of lemma A.1 is not very useful, since the fluctuations
of φ reach their minimum for a different radius (in r̃) in general from the fluctuations of φ$

(in r$). Thus we need to transform φ$ such that the fluctuations of the transformed φ$ reach
their minimum at the same radius r̃ as those of φ. This we achieve as follows. There is a
uniform transformation ( which translates all the points on the circle with radius r$ centred
at the origin to the circle centred at the origin with radius r̃ , the radius of φ. If we apply ( to
φ$(r, θ), then we get φ$(r + r$− r̃), the desired transformation of φ$(r, θ). Now we can prove
the next lemma:

Lemma A.2. For every ε > 0, the following holds:

|f̄ $N (r, θ)| � |f̄ $N (r + r$ − r̃ , θ)| + ε. (13)

The constant r$ is the radius of the circle parametrizing the set of mean-field solutions in the
Ising case (q = 2). The constant r̃ is the radius r̂ in the Potts case q = 3 rescaled by the factor
2/

√
3; thus r̃ = (2/√3)r̂ .

Proof. We use the following estimate, which is lemma 2.5 from [BvEN]:

|Ef $N(r, θ)− f $N(r, θ)| � ε

2
a.e. on every bounded set. (14)

Define

O = {
z ∈ R
2 : ‖
z‖ > r$ + δ}, O′ = {
z ∈ R

2 : ‖
z‖ > r̃ + δ}.
Set O ⊂ O′ because r̃ � r$. Check this by using (7) and (8) and the scaling factor 2/

√
3 for

r̃ . Decompose O′ as O ∪ O′ \ O. Because O′ \ O is a finite set, we can use estimate (14).
With the estimate already obtained for O in [BvEN], equation (13) holds for all (r, θ) ∈ O′.
Because (14) is true for all finite sets, equation (13) holds for all (r, θ). �

Note that in a neighbourhood of r̃ it is equivalent to look in a neighbourhood of r$. Now
we are able to prove the following theorem:

Theorem A.1. Let L be the induced distribution of the overlap parameters and letm = m(θ) =
(r̃ cos θ, r̃ sin θ), where θ ∈ [0, π) is a uniformly distributed random variable. Then,

LN,β D→ 1
2δm(θ) + 1

2δ−m(θ) ≡ L∞,β[m].

Furthermore, the (induced) AW-metastate is the image of the uniform distribution of θ under
the measure-valued map θ → L∞,β[m(θ)].

First we prove the following two lemmas:

Lemma A.3. For φN and ξi , ηi , with i ∈ N as defined above, there exist strictly positive
constantsW,W ′, l, l′ such that (r̃ is the largest solution of (8))∫

|‖
z‖−r̃|�δN
e−βNφN (
z) d
z∫

|‖
z‖−r̃|<δN
e−βNφN (
z) d
z

� We−WNl

on a set of P -measure at least 1 −W ′e−K ′Nl′ , where δN = N− 1
10 .
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Lemma A.4. Assume the hypotheses of lemma A.3. Let aN = N−1/25. Then there exist strictly
positive constants K1,K2, C1, C2 such that on a set of P -measure at least 1 −K1e−N1/25

the
following bound holds:∫

A′
N

e−βNφN (
z) d
z∫
AN

e−βNφN (
z) d
z
� C1e−N1/5

,

where

AN =
{
(r, θ) ∈ R

+
0 × [0, 2π)||r − r̃| < δN, gN(θ)− min

θ
gN(θ) < aN

}

A′
N =

{
(r, θ) ∈ R

+
0 × [0, 2π)||r − r̃| < δN, gN(θ)− min

θ
gN(θ) � aN

}

Here

gN(θ) =
√
N

β
EψEζ ln

{
1

2
+ cosh βζ r̃ cosψ

}

− 1

β
√
N

N∑
i=1

ln

{
1

2
+ cosh {βr̃ζi cos (θ − ψi)}

}
,

which is the polar coordinate form of the function gN(
z), which is defined as

gN(
z) = 1√
N

N∑
i=1

{
ln

{
1

2
+ cosh β
z · (ξ, η)

}
− E ln

{
1

2
+ cosh β
z · (ξ, η)

}}
.

It is convenient to look at the following decomposition:

(φN − EφN)(
z) = β
√
N(gN(
z′) + hN(
z)), where hN(
z) = gN(
z)− gN(
z′).

The variable 
z′ is the projection of 
z onto S1(r̃). Note that β
√
NgN = φN − EφN ≡ f̄N .

Define g$N and h$N in the same way but as decompositions of f̄ $N instead of f̄N .

Proof of lemma A.3. Compare lemma 2.1 in [BvEN]. Define

O = {
z ∈ R
2 : ‖
z‖ > r$ + δ}, O′ = {
z ∈ R

2 : ‖
z‖ > r̃ + δ},
I = {
z ∈ R

2 : ‖
z‖ � r$ − δ}, I ′ = {
z ∈ R
2 : ‖
z‖ � r̃ − δ}.

Now we first estimate the numerator which we can also write as∫
|‖
z‖−r̃|�δN

e−βNφN (
z) d
z =
∫

O′∪I ′
e−βNEφN (
z)e−βN(φN (
z)−EφN (
z)).

With lemma A.2 we have the following inequality:

sup

z∈O′

|f̄ $N (r, θ)| − ε � sup

z∈O′

|f̄ $N (r + r$ − r̃ , θ)| = sup

z∈O

|f̄ $N (r)|

P

[
sup

(r,θ)∈O′
|f̄ $N (r, θ)| − ε � C

2
(r − r̃)2

]
� P

[
sup
(r,θ)∈O

|f̄ $N (r, θ)| � C

2
(r − r$)2

]
.

(15)

Lemma 2.4 of [BvEN] tells us that this event is of measure zero. Now we can estimate the
integral.

First we estimate Eφ$N(
z). Because Eφ$N(
z) is a bounded function, in each bounded
interval one can always bound it from below by a function of the following kind:

Eφ$N(
z) � C(‖
z‖ − r̃)2 + Eφ$N(r̃), with C a positive bounded constant.
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Then

Eφ$N(
z + r$ − r̃) � C(‖
z‖ − r$)2 + EφN(r
$),

when we apply ( to this estimate. Now use estimate (15) with this constant C. Then the
following holds:∫

O′
e−βNEφN (
z)e−βN(φN (
z)−EφN (
z)) dz �

∫
O

e−βNEφ$N (
z+r$−r̃)eβN |f̄ $N (
z)|eεβN d
z

� e−βN(Eφ$N (r$)−ε)
∫

O
e−βNC(r−r$)2 eβN(C/2)(r−r

$)2 dr

= eβN(Eφ
$
N (r

$)−ε)
∫

O
e−βN(C/2)(r−r$)2 dr

� · · · � 2π
2

βNC
exp(−βN(Eφ$N(r$)− ε)) exp −βNC2

(
δ2

4

)
.

For further details see [BvEN]. The interior I gives a similar expression. Notice that the
image of I under the transformation (: r → r + r$ − r̃ is I \ B(0, r$ − r̃). The ball
B(0, r$ − r̃) is a finite set, so we can integrate over I instead of I \ B(0, r$ − r̃) by (14). To
estimate the denominator we just replace r$ by r̃ in the expressions of the proof of lemma 2.1
in [BvEN, p 192, 193]. Combining the estimates for the numerator and the denominator gives
the desired result.

Proof of lemma A.4. From this moment we ignore the constants which enter on applying
lemma A.1, because they cancel out when we divide the numerator by the denominator. For
|hN | the following holds:

|hN | � |h$N | � ε,
by lemma 2.6 of [BvEN]. Consider the following integral:∫

θ :gN (θ)>aN + min
θ
gN (θ)

e−√
NgN(θ) � 2πe−√

N min
θ
gN(θ)e

√
NaN .

Henceforth it is just a matter of plugging in to get the desired estimate on the denominator.
We refer the reader to [BvEN] for the details. One gets a estimate for the denominator in the
same way. By dividing the two estimates, lemma A.4 is proven.

Proof of theorem A.1. In the preceding paragraphs we have seen that the measures L̃
concentrate on a circle at the places where the random function gN(θ) takes its minimum. Now
it only remains to show that these sets degenerate to a single point, a.s. in the limit N → ∞.
If we have proven it for L̃, then we have proven it also for L, because limN→∞ L̃ = L. With
the help of [BvEN] this is very easy, because we can use proposition 3.4 with the function

g(·) = ln{cosh β· + 1
2 }.

This works because g is an aperiodic even function. And of course proposition 3.7 also holds
for this g. These two propositions that we use tell us that the process ηN = gN(θ)− EgN(θ)

converges to a strictly stationary Gaussian process, having a.s. continuously differentiable
sample paths. And on any interval [s, s + t], t < π the function ηN has only one global
minimum. Furthermore, if we define the sets

LN =
{
θ ∈ [0, π) : ηN(θ)− min

θ ′
ηN(θ

′) � εN
}
,

with εN some sequence converging to zero, LN
D→ θ$. Then the remarks below Proof of

theorem 3 in [BvEN] conclude the proof.
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